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Direct in vivo investigation of mammalian metabolism is

complicated by the distinct metabolic functions of different

tissues. We present a computational method that successfully

describes the tissue specificity of human metabolism on a

large scale. By integrating tissue-specific gene- and protein-

expression data with an existing comprehensive reconstruction

of the global human metabolic network, we predict tissue-

specific metabolic activity in ten human tissues. This reveals

a central role for post-transcriptional regulation in shaping

tissue-specific metabolic activity profiles. The predicted tissue

specificity of genes responsible for metabolic diseases and

tissue-specific differences in metabolite exchange with

biofluids extend markedly beyond tissue-specific differences

manifest in enzyme-expression data, and are validated by

large-scale mining of tissue-specificity data. Our results

establish a computational basis for the genome-wide study

of normal and abnormal human metabolism in a

tissue-specific manner.

Metabolic network modeling of biological systems involves the ana-
lysis and prediction of metabolic flux distributions under diverse
physiological and genetic conditions. Traditional modeling techniques
are based on mathematical approaches that require detailed informa-
tion on kinetics and on enzyme and metabolite concentrations1,2.
However, a lack of accurate information of kinetic constants and
enzyme and metabolite intracellular concentrations limits the current
applicability of such methods to small-scale systems. Constraint-based
modeling bypasses this hurdle by analyzing the function of large-
scale metabolic networks through relying solely on simple physical-
chemical constraints3. In recent years, constraint-based modeling has
been frequently used to successfully predict various phenotypes of
microorganisms, such as their growth rates, rates of nutrient uptake,
by-product secretion and the lethality of gene knockouts (see ref. 4
for review).

Despite this progress in applying constraint-based modeling to
studying the metabolism of microorganisms, large-scale modeling of
human metabolism is still in its infancy. Nonetheless, the emergence of

metabolic diseases such as diabetes and obesity as major sources of
morbidity and mortality5,6 has stimulated research into human
metabolism and its regulation. Metabolic enzymes and their regulators
are increasingly considered viable drug targets for these and other
conditions7,8. However, in reconstructing human metabolic networks,
most of the previous work has focused on characterizing distinct
metabolic pathways9,10. Until recently, reconstructions of large-scale
human metabolic networks had been performed only for specific cell
types and organelles11–13. Although fundamental steps forward, recon-
structions of the global human metabolic network based on an
extensive evaluation of genomic and bibliomic data (that is, compre-
hensive assessment of the literature)14,15 are not tissue specific. In
adapting constraint-based modeling methods from the realm of
microorganisms to that of multicellular organisms, one encounters
two main hurdles. The first is that different tissues have different
metabolic objectives that are not well characterized and remain largely
unknown. This is in contrast to modeling microorganisms where a
simple objective function (such as maximizing the biomass produc-
tion rate) can be used together with flux balance analysis4 to predict
biologically plausible flux distributions. The second major obstacle is
the lack of information on tissue-specific metabolite uptake and
secretion, which is essential for employing flux balance analysis.

We present a new constraint-based computational method for
systematically predicting human tissue-specific metabolic behavior
by integrating a genome-scale metabolic network with tissue-specific
gene- and protein-expression data. Changes in gene- and protein-
expression levels play a major role in controlling tissue-specific
metabolic functions16–18, and a strong correlation between gene
expression and measured19,20 and predicted21–24 metabolic fluxes is
reported for microorganisms. To account for metabolic flux activity
that is not reflected in the expression data (that is, post-transcriptional
regulatory effects), we treat tissue-specific variations in enzyme-
expression levels not as the final determinants of enzyme activity,
but as cues for the likelihood that the enzyme in question supports
metabolic flux in its associated reaction(s). Network integration is
then used to accumulate these cues into a global, consistent metabolic
behavior, which reflects the outcome of putative post-transcriptional
regulatory effects. Our method’s reliance on enzyme-expression data
to infer tissue-specific metabolic flux eliminates the need for a priori
knowledge of tissue-specific objective functions and metabolites
exchanged by the tissue with biofluids. Instead, the method provides
predictions regarding tissue-specific metabolite uptake and secretion.

To examine our method’s ability to correctly predict metabolic
behavior based on gene-expression data, we first apply it to predicting
the metabolic state of the yeast Saccharomyces cerevisiae underPublished online 17 August 2008; doi:10.1038/nbt.1487
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conditions for which reliable data are readily available for validation.
We then apply it to a genome-scale human metabolic network
model14 that we have integrated with tissue-specific enzyme-
expression data to predict tissue-specific metabolic behavior of ten
human tissues. Specifically, for each tissue, we obtain a unique view of
metabolic activity that includes information on the predicted
exchange of metabolites with surrounding biofluids. The model’s
tissue-specific activity predictions are validated based on a compre-
hensive comparison to known large-scale information on tissue
specificity of genes, reactions and metabolites obtained from various
databases, and by studying the tissue specificity of genes that
cause metabolic disease. The predicted tissue-specific metabolic
behaviors, made available through our website (http://www.cs.tau.
ac.il/~shlomito/tissue-net), should provide valuable reference sources
for studying human metabolism under normal and disrupted
physiological conditions.

RESULTS

Network-based prediction of metabolic behavior

To account for levels of post-translational regulation that are not
reflected in the gene- and protein-expression data we use, we treat the
expression levels of enzymes merely as cues for the likelihood that
their associated reactions carry metabolic flux. We use network
integration to accumulate these cues into a global, consistent
prediction of metabolic behavior. To this end, we employ a discrete
representation of significantly high or low enzyme-expression levels
across tissues, following previous usage of such data in metabolic
modeling for other purposes25,26. Network integration is then done by
solving a constraint-based modeling optimization problem to find a
steady-state metabolic flux distribution (that is, an assignment of
fluxes to all the reactions in the network) that, first, satisfies the
stoichiometric and thermodynamic constraints embedded in the
model and, second, maximizes the number of enzymes whose
predicted flux activity is consistent with their measured expression
level. In other words, the method aims to obtain a flux distribution
where the number of flux-carrying reactions associated with highly
expressed enzymes is maximized, and the number of flux-carrying

reactions associated with lowly expressed genes is minimized. The
resulting predicted flux distribution is used to assign flux activity
states to the genes, reflecting the presence and/or absence of nonzero
flux through the enzymatic reactions they are associated with. For
some of the genes, their flux activity state can be uniquely determined
to be active or inactive, with associated confidence estimations. For
others, their activity state cannot be uniquely determined because of
potential alternative flux distributions with the same overall consis-
tency with the expression data (mostly owing to isozymes or
alternative pathways; Supplementary Results, section 1, and Supple-
mentary Fig. 1 online)22,26,27. Because expression levels are not
enforced as exclusive determinants of metabolic flux, the flux activity
states of genes may deviate from their expression states. Genes are
considered to be post-transcriptionally up- or downregulated based on
a difference between their measured expression level and their
predicted flux activity state in a given tissue.

An example of flux activity–state predictions obtained with the
above method is shown in Figure 1. The method predicts a flux
distribution that is consistent with the expression state of five of the
six genes expressed at significantly high or low levels relative to some
reference state. Based on the flux predictions, two enzymes are
predicted to be post-transcriptionally regulated. As the highly
expressed enzyme E7 is predicted not to support metabolic flux, it
is hence considered to be downregulated. As the moderately expressed
membrane transporter E4 is predicted to support metabolic flux, it is
hence considered to be upregulated. Predicted fluxes through specific
exchange reactions that cross the system boundaries represent the
uptake and secretion of metabolites from the tissue. Of the five
metabolites that can be exchanged with the tissue’s surroundings
(M1-2, M7-9), the method predicts the uptake of one metabolite
(M1) and the secretion of two others (M7 and M8). Notably, the high-
expression level of the membrane transporter of M1 indicates that it
may be active, but it does not provide information regarding whether
M1 is taken up or secreted from the tissue. In contrast, the integrated
approach can determine the direction of flux for many reactions by
propagating the known thermodynamic constraints on reaction rever-
sibility and directionality throughout the network. In the current
example, the direction of the activated pathway is inferred based on
the irreversibility of enzymes E3 and E4.

As a basic validation of our method, we applied it to predict the
metabolic behavior of the yeast S. cerevisiae based on gene-expression
data measured in various growth media20 (Supplementary Results,
section 2, and Supplementary Fig. 2 online). Comparing the pre-
dicted metabolic activity to measured metabolic fluxes in the central
carbon metabolism of S. cerevisiae20 revealed a significant correlation
(hypergeometric P-value ¼ 0.01) with a precision of 0.71 and recall of
0.89 (Supplementary Fig. 3 online). As a further larger-scale valida-
tion, the predicted flux activity pattern was found to significantly
correlate with flux balance analysis predictions (based on explicit yeast
biomass maximization) with a mean precision of 0.89 and recall of
0.79 across growth media (mean hypergeometric P-value ¼ 5.6 �
10�8; Supplementary Fig. 4 online). For comparison, the predicted
flux activity obtained solely from expression data (that is, only for the
subset of the reactions associated with genes in the model) has a
markedly lower accuracy, with a precision of 0.83 and recall of 0.61.
Moreover, the predicted flux activity pattern correctly captures the
directionality of metabolite exchange with the growth media, and the
production of essential biomass precursors, in agreement with pre-
dictions made using flux balance analysis (Supplementary Figs. 5 and
6 online). This is notable because our method does not use informa-
tion on biomass composition or metabolite exchange.
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Figure 1 An example of predicting flux-activity states of genes based on a

metabolic network model and gene-expression measurements. Circular nodes

represent metabolites, whereas diamond nodes represent enzymes. White,

red and green represent normal, significantly low and significantly high

expression of the enzyme-encoding genes, respectively. Solid edges

represent metabolic reactions. Broken edges associate enzymes with the

reactions they catalyze. The predicted steady-state flux distribution,

involving the activation of reactions, is shown as purple arrows. Enzyme E4

is predicted to be post-transcriptionally upregulated and E7 is predicted to

be post-transcriptionally downregulated.
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Predicting human tissue-specific metabolism

We computed tissue-specific behavior based on the metabolic network
model of Duarte et al.14 and sets of gene-28 and protein-29expression
measurements in ten tissues: brain, heart, kidney, liver, lung, pancreas,
prostate, spleen, skeletal muscle and thymus (Supplementary Data
Set 1 online). The activity states of 644 of the model genes were
uniquely determined (i.e., scored as either active or inactive) in at least
one tissue, with an average of 408 genes with a determined activity state
per tissue (Supplementary Data Set 2 online). The activity states of the
remaining genes in the model remained undetermined either because
of errors in the model (in the form of reactions that reside on dead-end
pathways) or because of the existence of alternative flux distributions
(mostly resulting from isozymes and alternative pathways). Many of
the genes predicted to be active in a certain tissue are not highly
expressed there, and, conversely, many of the genes predicted to be
inactive are not lowly expressed; this shows the considerable amount of
additional information obtained by integrating expression data with
the metabolic network to infer metabolic gene activity (Fig. 2a,b). Our
approach predicts an average of 42 genes (that is, 3.6% of the analyzed
genes) to be post-transcriptionally upregulated and 180 (15.4%) genes
to be post-transcriptionally downregulated in each tissue. This points
to an interesting asymmetric effect of post-transcriptional regulation
on metabolic flux activity. The predicted activity states were found to
be robust to noise in the expression data, with noise in the expression

state of 15% of the genes causing up to only
8% of the predicted activity states to be in
error (Supplementary Table 1 online). To
assess the accuracy of the model predictions,
we performed a fivefold cross-validation test
in which the gene activities for a set of 20% of
the genes were predicted, while using the
expression of the remaining 80% to constrain
the model gene activity. The overlap between
the genes predicted as active and the highly
expressed genes in the held-out data was
significant for all tissues (Supplementary
Fig. 7 online).

To systematically validate the predicted
tissue-specific metabolic behavior, we col-
lected data on tissue specificity of meta-
bolites from the Human Metabolome
Database (HMDB)30 and biochemical reac-
tions from the Braunschweig Enzyme Data-

base (BRENDA)31 (Table 1 and Supplementary Data Set 3 online).
We also obtained data on tissue-specific gene activity by searching the
worldwide web for co-occurrences of genes and tissues in the titles of
research papers (Table 1 and Supplementary Data Set 3). The
predicted tissue-specificity of genes, reactions and metabolites was
significantly correlated with all three data sources (Table 1, Supple-
mentary Table 2 and Supplementary Results, section 3 online).
Focusing on tissue specificity findings of genes, reactions and meta-
bolites that are inferred by post-transcriptional upregulation (that is,
tissue-specificity findings that cannot be inferred by using the original
expression data without the metabolic network) provides a signi-
ficant high number of matches with the known tissue-specific associa-
tions in all cases (Table 1). Analogously, in the inverse direction,
tissue specificity inferred by post-transcriptional downregulation
entails a significantly low number of matches with the known tissue-
associations (Table 1), as one would expect.

As further validation, we classified the reactions to metabolic
subsystems (as defined in the original metabolic network model14,
primarily by using the Kyoto Encyclopedia of Genes and Genomes
LIGAND database) and surveyed predicted subsystem-tissue associa-
tions arising from post-transcriptional regulation of enzymes (Sup-
plementary Fig. 8 online). Many such associations are consistent with
known tissue functions and co-occur on the web in a statistically
significant manner (hypergeometric P-value ¼ 3.6 � 10�4). For

Table 1 Accuracy of tissue-specificity predictions of genes, reactions and metabolites

Global accuracy Upregulation accuracy Downregulation accuracy

Category Validation data source Pre. Rec. P-value Pre. Rec. P-value Pre. Rec. P-value

All genes WEB 0.37 0.37 2.6�10�9 0.33 0.18 1.6�10�8 0.82 0.24 2.2�10�3

Disease genes OMIM37 0.49 0.55 o10�300 0.47 0.50 o10�300 0.85 0.22 3.6�10�4

Transporter Genes HMTD34, TCDB35 0.57 0.41 6.1�10�7 0.64 0.21 0.06 0.8 0.25 0.03

Enzymatic reactions BRENDA31 0.7 0.42 4.�10�12 0.55 0.21 2.6�10�12 0.68 0.25 3.7�10�25

All metabolites HMDB30 0.36 0.47 o10�300 0.32 0.32 7.4�10�8 0.81 0.21 4.2�10�7

Exchange metabolites HMDB30 0.36 0.38 3.2�10�3 0.33 0.25 0.06 0.8 0.2 0.01

The accuracy P-value reflects the overlap between the predicted tissue-associations of genes, reactions and metabolites (the different categories, each composing a separate row in
the Table) and known tissue-associations derived from various data sources (assuming a hypergeometric distribution of random tissue-associations as the background model). The
prediction accuracy is computed over all genes that are predicted to be active in at least a single tissue (see Supplementary Results, section 3, for details regarding the choice of
validation gene set). The global accuracy column refers to the set of all tissue associations (both up- and downregulated) predicted by the model. The prediction accuracy for the
subsets of elements that are inferred based on post-transcriptional up- or downregulation is displayed in the next columns, for each category (row). The complete sets of known and
predicted tissue-specific activities of genes, reactions and metabolites are available in Supplementary Data Sets 2 and 3. Pre., precision; Rec., recall.
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Figure 2 The fraction of all metabolic genes in the model predicted to be active and inactive in ten

different tissues. (a) The fraction of highly expressed and metabolically active genes is shown in black

and the fraction of post-transcriptionally activated genes (that is, genes that are not highly expressed

but predicted to be active) in white. (b) The fraction of lowly expressed and metabolically inactive

genes is shown in black, and the fraction of post-transcriptionally downregulated genes (that is, genes

that are not lowly expressed but are predicted to be inactive) in white.
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example, the model predicted the post-transcriptional upregulation of
the genes HSD17B4 (hydroxysteroid (17-beta) dehydrogenase 4) and
SCP2 (peroxisomal thiolase 2, a sterol carrier protein) in the liver, in
accordance with their known involvement in bile-acid biosynthesis9.
In another large-scale validation of our predictions, we draw on
previous studies that have shown that genes expressed in a small
number of tissues tend to have higher evolutionary rates32,33. Repeat-
ing a similar analysis, we found that genes predicted to be active by the
integrated model in a small number of tissues indeed have significantly
higher evolutionary rates (Wilcoxon test P-value ¼ 6 � 10�4). In
contrast, the subset of metabolic genes whose tissue specificity is
determined solely by expression does not manifest significantly higher
evolutionary rates for genes expressed in only a small number of
tissues than those expressed in a large number of tissues.

Tissue-specific uptake and secretion of metabolites

Tissue-specific metabolic behavior can be further characterized by
identifying the metabolites that a particular tissue exchanges with

biofluids. Relying solely on gene or protein expression for this task is
problematic as only 46% (115/249) of the metabolites that are known
to be secreted or taken up by human tissues are associated with known
membrane transporters14. Moreover, even for these metabolites,
expression data do not reflect the direction of transport and they do
not account for potential post-transcriptional regulation of the
transporter. Based on the model’s flux activity predictions, we derived
a global map of secretion and uptake of 249 metabolites across
different tissues (Supplementary Fig. 9 and Supplementary Data
Set 2 online). As expected, the major metabolic organs, the liver and
kidney, exchange the highest number of metabolites with biofluids (81
and 71, respectively).

The predicted tissue-specific metabolite exchange that depends
on membrane transporters was validated based on data on tissue
specificity of transporters, obtained from the Human Membrane
Transporter Database34 (HMTD) and from the Transport Classifica-
tion Database35 (TCDB) (Table 1 and Supplementary Data Set 3). In
many of these cases, such as uptake of norepinephrine by the heart36,
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Figure 3 Predicted tissue-specific activity of disease-causing genes. (a) Rows represent disease-causing genes

and columns represent tissues. Colors represent highly expressed genes that are predicted to be active (gray),

post-transcriptionally upregulated genes (green) and post-transcriptionally downregulated genes (red). Table

entries marked with an ‘X’ represent a known gene-tissue association based on the OMIM database. (b) The

overlap of sets of associations between disease-causing genes and tissues affected by the diseases (based on the

OMIM database), tissues in which the genes are predicted to be active based on the model and tissues in

which the genes are predicted to be active based solely on expression data.
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the correct metabolite exchange was not reflected in the transporter’s
expression state. As further validation of these predictions in cases
where a membrane transporter is not known, we show that predicted
tissue-specificity of the exchanged metabolites matched their known
presence in various tissues, based on HMDB (Table 1 and Supple-
mentary Data Set 3). For example, the secretion of the bile acid
chenodeoxyglycocholate in the liver9 is correctly inferred based on the
predicted flux activity, even though no membrane transporter is
associated with it. Notably, for 33% of the metabolites that are
exchanged with biofluids, no tissue-specificity data were found in
either of the above data sources, making this the first prediction of
their tissue-specific uptake and secretion.

Tissue-specific analysis of metabolic disease genes

We focused on 60 known disease-causing genes in the OMIM
database37 that are predicted to be active in one or more tissues and
obtained a set of 164 predicted gene-tissue associations (Fig. 3a). The
accuracy of these predictions was assessed by comparing them with the
actual tissue-associations of the corresponding diseases, obtained by
mining the OMIM database (Supplementary Data Set 3). The
prediction accuracy of disease-related gene-tissue associations is
statistically significant (Table 1), with a precision of 0.49 and a recall
of 0.55 (Fig. 3b). When we focused on the 129 gene-tissue associations
that are inferred solely based on predicted post-transcriptional regula-
tion effects (that is, excluding those that can be inferred by the
expression data directly without the integrated model), we also
obtained a significant correlation with the known tissue-associations
(Table 1). This further shows that additional information is gained by
applying the present method, which extends the set of gene-tissue
associations threefold compared with using the expression data only.
For example, the gene GBE1 (1,4-alpha-glucan branching enzyme),
which causes the glycogen storage disease type IV (Andersen disease;
OMIM:232500), is predicted to be post-transcriptionally upregulated
specifically in all the tissues whose function is affected by this disease
(liver, heart, skeletal muscle and brain38,39), whereas it is not highly
expressed in any one of them (Fig. 3a). A visualization of the glycogen
metabolism sub-network showing the predicted activity of GBE1 in
the liver based on the activity of related, highly expressed genes is
shown in Figure 4. Similarly, the genes DLD (dihydrolipoamide
dehydrogenase) and BCKDHA (branched chain keto acid dehydro-
genase E1) that cause the maple syrup urine disease (OMIM:248600)
are predicted to be post-transcriptionally upregulated specifically in

the brain and liver, in accordance with the information in OMIM. The
prediction regarding BCKDHA is further evidence that the activity of
branched chain keto acid dehydrogenase is post-transcriptionally
regulated via phosphorylation, with the corresponding kinase allos-
terically regulated by branched-chain keto acids40. Finally, disease-
causing genes have been shown to be more likely to be expressed in a
tissue-specific manner than genes not associated with pathology32.
Repeating the same analysis for the metabolic genes considered here
reveals a moderate association between disease-causing genes and the
extent of tissue specificity determined solely based on expression data
(hypergeometric P-value ¼ 0.016), but a markedly higher association
for tissue-specificity level determined based on the predicted tissue-
specific metabolic activities (hypergeometric P-value ¼ 9 � 10�8).
These results further support the central role of post-transcriptional
regulation in determining the tissue-specific activity of metabolic
disease-causing genes.

DISCUSSION

This study presents a generic approach for systematically predicting
human tissue-specific metabolic behavior by integrating a genome-
scale metabolic network model with tissue-specific gene-expression
and protein-abundance data. The method predicts the metabolic
behavior of ten human tissues, suggesting that on average, 18% of
the metabolic genes they express are post-transcriptionally regulated.
That is, the predicted flux activities of these genes differs from their
expression levels. Post-transcriptional regulation of metabolic activities
can further be dissected into hierarchical regulation, which affects the
maximum activity of enzymes (that is, vmax) by controlling protein
translation and degradation rates and their phosphorylation, and
metabolic regulation, which denotes the effect of metabolite concen-
trations on actual enzyme activity through allosteric and mass action
effects41. Notably, the dissection of the predicted post-transcriptional
regulation to either hierarchical or metabolic regulation is beyond the
scope of our method and would require comprehensive experimental
data sets on tissue-specific enzyme activities and metabolic fluxes. The
substantial effect that post-transcriptional regulation is predicted to
have on human tissue-specific metabolism is consistent with its critical
role in determining metabolic fluxes in microorganisms41,42.

To validate the predicted tissue-specific metabolic behavior, we relied
on various data sources for tissue specificity of genes, reactions and
metabolites. In all cases, the predicted tissue-specificity was signifi-
cantly correlated with these data sets, with the precision and recall

Figure 4 An example of a sub-network of

glycogen metabolism. (a,b) The predicted tissue-

specific activity of GBE1 (1,4-alpha-glucan

branching enzyme) in the liver (a) and its

inactivity in the spleen (b) are illustrated. Nodes

(circles and diamonds) represent metabolites and

edges (arrows) represent biochemical reactions.

The presented sub-network is connected to the
remaining network via currency metabolites

(highly connected metabolites in the network)

that are represented by diamond-shaped nodes

(Supplementary Results, section 5). For

simplicity, only abbreviations of metabolite

names and enzyme (Enzyme Commission)

numbers are specified, with the full information provided in the tissue-specific network visualizations on our website (http://www.cs.tau.ac.il/~shlomito/

tissue-net). Gene-expression data are represented by edge colors, with reactions associated with highly, lowly or moderately expressed genes colored in green,

red, or black, respectively. An optimal flux distribution (that is, one that is the most similar to the expression data) is shown. Solid edges represent reactions

that carry metabolic flux, whereas broken edges represent reactions with zero flux. Reactions whose flux activity state is uniquely determined to be active or

inactive (across the space of alternative optimal flux distributions) are marked with thick edges. As evident, GBE1 is predicted to have an active flux activity

state in the liver and an inactive state in the spleen, although it is not highly expressed in both tissues.
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varying between 0.36–0.7 and 0.37–0.55, respectively (Table 1, Sup-
plementary Table 2 and Supplementary Results, section 3). It should
be noted, though, that one cannot expect to get an optimal correlation
with the relevant tissue-specificity data as the data are noisy and are
inconsistent between data sources (Supplementary Fig. 10 online).
Some of the false predictions are expected to result from incomplete-
ness of the metabolic network model, as well as from several simplify-
ing assumptions incorporated into our computational method to
enable the large-scale analysis of a network with thousands of reactions.
Specifically, the steady-state assumption (required because of the lack
of global enzyme kinetic data) under which the metabolic state is
described as a constant flow of metabolic flux does not take into
account time-dependent changes in tissue metabolism. Such changes
may be reflected in alterations in gene-expression levels (putatively
caused by transcriptional regulation or changes in mRNA degradation
rates) and hence may potentially be predicted by our method given the
relevant time-dependent expression data.

The accuracy of our tissue-specificity gene predictions can be
further assessed by a comparison with previous methods that rely
on enrichment analysis of highly expressed genes within sets of
functionally related genes (e.g., metabolic pathways). Applying two
such state-of-the-art methods, ErmineJ43 and GSEA44, to predict
tissue specificity of metabolic genes and reactions based on tissue-
specific gene-expression data28 testifies to the moderately higher
prediction accuracies obtained by our method (Fig. 5a, Supplemen-
tary Results, sections 3,4, and Supplementary Figs. 11–14 online).
Figure 5a compares the prediction performance of all methods on a
set of genes predicted to be active in at least a single tissue. The recall
level of the gene activity predictions obviously decreases if we take into
account additional metabolic genes whose activity state cannot
be determined by our method (or for that matter, by any constraint-
based approach using the same metabolic model) owing either to
errors in the model or the existence of multiple flux distributions

(Supplementary Results, section 3, Supplementary Figs. 12–14 and
Supplementary Table 2). Considering these additional genes, but
excluding isozymes, the mean recall level of our method is still higher
than the other approaches (0.25 for our method compared to 0.22 and
0.08 for ErmineJ and GSEA; Supplementary Fig. 12). When we also
include isozymes (for which our method is incapable of predicting a
unique activity state), ErmineJ presents the highest recall (0.22
compared with 0.14 for our method) but with a considerably lower
precision (0.38 compared with 0.47 for our method; Supplementary
Fig. 13). Predicting isozymes’ activity based on a simplifying assump-
tion that they are either coherently activated or inactivated in each
tissue considerably raises the recall level of our predictions above those
of ErmineJ to a level of 0.33 but lowers the precision slightly below
ErmineJ to a level of 0.35 (Supplementary Fig. 14).

On a conceptual level, in contrast with constraint-based methods
that involve global stoichiometric computations over the whole net-
work, gene set enrichment–based methods rely on pathways defined a
priori and do not use information about the activity of neighboring
pathways to infer the activity of a given pathway. The latter methods
assume that a gene set is either entirely activated or inactivated under
a certain condition, whereas in practice, different subsets of a pathway
may be activated because of the large fraction of alternative pathways
and cross-links among pathways. Indeed, inspecting the coherency of
metabolic pathway activity predicted by our approach (based on the
pathway annotation in ref. 14), a significant fraction (36%) of
classically defined pathways are only partially activated across the
different tissues (Fig. 5b), with the fraction of activated reactions per
pathway varying between 0.2 and 0.8. These results highlight the need
to consider the entire metabolic network in a global fashion without a
priori dividing the network into pathways that are, in fact, not
independent of each other.

To facilitate easy access to the predicted tissue-specific metabolic
behavior, we generated network visualizations in which the expression
and predicted flux data are projected over the global human network
(Supplementary Results, section 5). These network visualizations are
accessible through our website (http://www.cs.tau.ac.il/~shlomito/
tissue-net) and can be explored interactively using the freely available
Cytoscape software45. To allow for easy browsing through this huge
network, alternative views that dissect the network to either cellular
compartments or metabolic subsystems are available. An illustrative
example of a small sub-network with both tissue-specific expression
and predicted metabolic flux (as extracted from Cytoscape) is shown
in Figure 4.

The basic approach presented here opens the way for future
computational investigations of metabolic disorders given the relevant
expression data. A first step toward this endeavor by Duarte et al.14

mapped changes in gene expression measured following gastric bypass
surgery onto the metabolic network to visualize and interpret gen-
ome-scale changes in metabolic behavior. The computational method
described here can markedly advance this line of study by predicting a
flux distribution that is consistent with disease-state expression
data and that concomitantly allows predicting tissue-specific, post-
transcriptional regulatory effects. One such important application is
the classification of tissue-specific gene-expression measurements
from either healthy or sick individuals, based on the predicted
metabolic behavior that they induce. Another compelling application
would be the prediction of disease and tissue-specific biomarkers that
could be identified using biofluid metabolomics46.

Our approach can be used to predict the metabolic behavior of
many additional tissues under different physiological conditions, using
readily available tissue-specific expression measurements47,48. More
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Figure 5 Comparison of network- and pathway-based prediction.

(a) Comparison of gene tissue-specificity prediction obtained by our method

and with two functional enrichment-based methods, ErmineJ and GSEA.
Average precision and recall is computed over the various gene tissue-

specificity data sources referred to in Table 1, focusing on the set of genes

that is predicted by our method to be active in at least a single tissue

(Supplementary Results, sections 3 and 4). (b) Coherency of predicted

pathway activity based on pathway definitions given in ref. 14, measured by

the fraction of the reactions that are predicted to be active in each pathway

(across all tissues). As shown, a high fraction of the pathways are only

partially activated. For example, as many as 36% of the pathways have

between 0.2 and 0.8 of their reactions activated.
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refined tissue-specific models could potentially be generated by
identifying tissue-specific objective functions or measuring tissue-
specific metabolite exchange patterns that could further limit the
space of possible functional states49. Future tissue-specific metabolic
models may also integrate additional data on microRNA regulation
that are known to take a central role in cell-type differentiation50, as
well as incorporate organelle-specific proteomic data51. Overall, the
method presented here lays the foundation for the rapid development
of human tissue-specific metabolic models and is likely to advance the
computational study of human metabolic disorders.

METHODS
Tissue-specific modeling of metabolism. The genome-scale human metabolic

network model by Duarte et al. accounts for 1,496 ORFs, 2,004 proteins, 2,766

metabolites and 3,311 reactions14. Data on tissue specificity of genes based on

gene-expression data and protein abundance were obtained from Gene-

Notes18,28 and HPRD29, respectively. We consider a gene to be highly or lowly

expressed in a certain tissue if it is marked uniformly as expressed or

nonexpressed in all GeneNote patterns and in HPRD, respectively, or else it is

considered to be moderately expressed. A detailed Boolean gene-to-reaction

mapping (part of the metabolic network model of Duarte et al.) was employed

to identify a tissue-specific expression state for each reaction, reflecting whether

its enzyme-encoding genes are classified as expressed in the tissue. Specifically,

this was done by modifying the Boolean mapping to account for tri-valued

expression states, assigning highly, lowly and moderately expressed genes, values

of 1, –1 and 0, respectively, and replacing the logical ‘and’ and ‘or’ operators

with ‘max’ and ‘min’ expressions, respectively (following ref. 22). This analysis

resulted in a subset of the reactions in the model (denoted RH) that is defined to

be highly expressed and another subset (denoted RL) defined as lowly expressed.

For each tissue, we then formulated the following mixed integer linear

programming (MILP) problem to find a steady-state flux distribution satisfying

stoichiometric and thermodynamic constraints, while maximizing the number

of reactions whose activity is consistent with their expression state:

max
v;y+ ;y�

�X
i2RH

ðy+
i + y�i Þ+

X
i2RL

y+
i

�

s:t

S � v ¼ 0 ð1Þ

vmin � v � vmax ð2Þ

vi + y+
i vmin;i � e
� �

� vmin;i;i 2 RH ð3Þ

vi + y�i vmax;i + e
� �

� vmax;i;i 2 RH ð4Þ

vmin;ið1 � y+
i Þ � vi � vmax;ið1 � y+

i Þ; i 2 RL ð5Þ

v 2 Rm

y+
i ; y

�
i 2 0; 1½ �

where v is the flux vector and S is a n x m stoichiometric matrix, in which n is

the number of metabolites and m is the number of reactions. The mass balance

constraint is enforced in equation (1). Thermodynamic constraints that restrict

flow direction are imposed by setting vmin and vmax as lower and upper bounds

on flux values in equation (2), respectively. For each expressed reaction, the

Boolean variables y+ and y– represent whether the reaction is active (in either

direction) or not. Specifically, a highly expressed reaction is considered to be

active if it carries a significant positive flux that is greater than a positive

threshold e (equation (3)) or a significant negative flux o –e (equation (4) for

reversible reactions). We chose a threshold of e ¼ 1 to determine reactions’ flux

activity for highly expressed reactions, though various other choices provide

qualitatively similar results. For each lowly expressed reaction, the Boolean

variable y+ represents whether the reaction is inactive (equation (5)). Specifi-

cally, lowly expressed reactions are considered to be inactive if they carry zero

metabolic flux, though changing equation (5) to enable these reactions to carry

a low metabolite flux (that is, with an upper bound lower than e) and still

be considered inactive provides qualitatively similar results (Supplementary

Table 3 online). The optimization maximizes the number of highly expressed

reactions (RH) that are active and the number of lowly expressed reactions (RL)

that are inactive. The commercial CPLEX solver was used for solving MILP

problems on a Pentium-4 machine running Linux in a few dozens of seconds

per problem.

A solution found by the MILP solver is guaranteed to be an optimal one in

terms of the objective function maximized, but the solution identified may not

be unique as a space of alternative optimal solutions may exist. In our case, the

space of optimal solutions represents alternative steady-state flux distributions

obtaining the same similarity with the expression data. To account for these

alternative solutions, we employed a variant of Flux Variability Analysis27 that

was used in a previous study on alternative metabolic-regulatory solutions26

(Supplementary Results, section 1). Our method computes for each metabolic

reaction whether it is predicted to be always active (or, in the opposite case,

always inactive) in a certain tissue across the entire solution space. This is

performed by solving two MILP problems (each similar to the one described

above) for each reaction to find the maximal attainable similarity with the

expression data when the reaction is forced to be activated (denoting this

similarity x) and when it is forced to be inactivated (denoting this similarity y).

A reaction is then considered to be active in this tissue if x4 y (that is, a higher

similarity with the expression data is achieved when the reaction is active than

when it is inactive) with a confidence level of x–y. Conversely, it is considered to

be inactive if x o y, with a confidence of y – x. In case x ¼ y (that is, the same

similarity with the expression data can be achieved both when the reaction is

forced to be active or inactive), the activity state is considered to be

undetermined. To assign a flux-activity state for a gene, which may be

associated with multiple reactions in the model (via one or more enzymes),

a similar method is employed. In this case, x denotes the maximal possible

similarity with the expression data when at least a single reaction asso-

ciated with the gene is activated, and y denotes the maximal possible correlation

with the expression data when all reactions associated with the gene

are inactivated.

Notably, previous studies have used MILP in the context of applying

constraint-based methods to studying metabolism in microbial organ-

isms26,52,53. A previous investigation has integrated a microorganism’s expres-

sion data with its metabolic network, showing improved prediction

performance of various phenotypes24. However, this method analyzes gene-

expression data as a preprocessing step that removes inactive genes before

employing a standard flux balance analysis procedure, which requires a

definition of a cellular objective function and additional a priori data on

metabolite uptake rates. As described above, our method does not require these

data (which are unavailable for human tissues) as it integrates the expression

data as part of an optimization method, which maximizes the consistency

between gene expression and the corresponding enzyme activity in a soft-

constrained manner.

Web searches for gene-tissue pairs. Web searches were done with the Google

search engine, using an automated scripting utility called Query Google (http://

www.linguistics.ucla.edu/people/hayes/QueryGoogle/). The searches were

restricted to web pages consisting of both the gene and the tissue names in

the title, using the ‘‘allintitle:’’ Google search command.

Data acquisition of disease-tissue associations. A list of diseases along with

their causing genes was obtained from the OMIM database37. The tissues

afflicted in each disease were found by parsing the disease description field in

the OMIM database in search for the tissue names.

Note: Supplementary information is available on the Nature Biotechnology website.
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