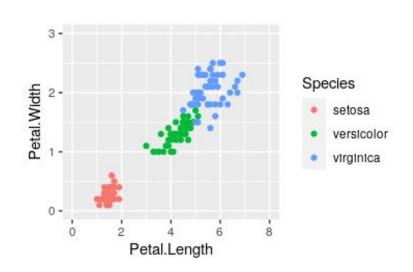
min-max

transformation depuis l'intervalle [min, max] vers l'intervalle [a,b]

$$v' = \frac{v - \min}{\max - \min}(b - a) + a$$

z-score

$$v' = \frac{v - \mu}{\sigma}$$



mise à l'échelle décimale

$$v' = \frac{v}{10^n}$$
 avec n le plus petit entier tel que max($|v'|$)<1

Normaliser les données : s'affranchir des unités de mesures

Ecart absolu à la moyenne (voire à la médiane)

$$s = \frac{|x_1 - \mu| + |x_2 - \mu| + \dots + |x_n - \mu|}{n}$$

Calculer la mesure normalisée (z-score)

$$z_i = \frac{x_i - \mu}{s}$$

L'écart absolu est plus robuste que celle de l'écart type

- qualitatives ou nominales :
 - . qualitatives
 - . binaires, logiques
 - . énumérations, facteurs
- numériques :
 - . quantitatives
 - . discrètes : entiers
 - . continues
 - . continues sur un intervalle
 - . échelle linéaire, logarithmique, exponentielle
 - . nombres complexes
 - . ordinales, temporelles
 - . géométriques, spatiales
- .textuelles, sémantiques, ontologies
- .mixtes

table de contingence

Objet
$$j$$

1 0

Objet i

0 c
 d

• coefficient simple d'appariement (invariant, si la variable est symétrique) $d(i,j) = \frac{b+c}{a+b+c+d}$

 coefficient de Jaccard (non invariant, si la variable est asymétrique)

$$d(i,j) = \frac{b+c}{a+b+c}$$

Exemple

Nom	Sexe	Fièvre	Tousse	Test-1	Test-2	Test-3	Test-4
Jacques	М	0	N	Р	N	N	N
Marie	F	0	N	Р	N	Р	N
Jean	М	0	Р	N	N	N	N

- sexe est symétrique
- les autres sont asymétriques
- soit O et P = 1, et N = 0

$$d(jacques, marie) = \frac{0+1}{2+0+1} = 0.33$$

$$d(jacques, jean) = \frac{1+1}{1+1+1} = 0.66$$

$$d(jean, marie) = \frac{1+2}{1+1+2} = 0.75$$

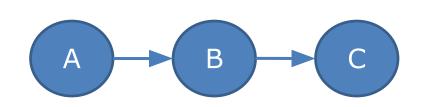
- généralisation des valeurs binaires : plus de 2 états
- méthode 1 : appariement simple
 - . m: nombre d'appariements, p: nombre total de variables

$$d(i,j) = \frac{p-m}{p}$$

- méthode 2 : utiliser un grand nombre de variables binaires
 - création d'une variable binaire pour chacun des états d'une variable nominale
- Information mutuelle

$$I(X,Y) = \sum_{y \in Y} \sum_{x \in X} \log \frac{p(x,y)}{p(x)p(y)}$$

$$I(X,Y) = \sum_{y \in Y} \sum_{x \in X} \log \frac{p(x,y)}{p(x)p(y)}$$



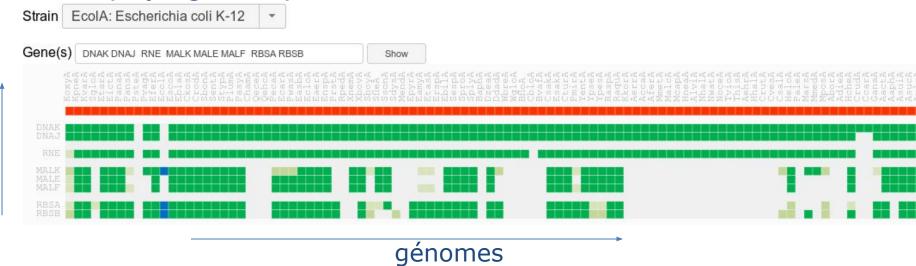
observations

	cond 1	cond 2	cond 3	cond 4	cond 5
A	high	low	high	low	low
В	high	low	high	high	low

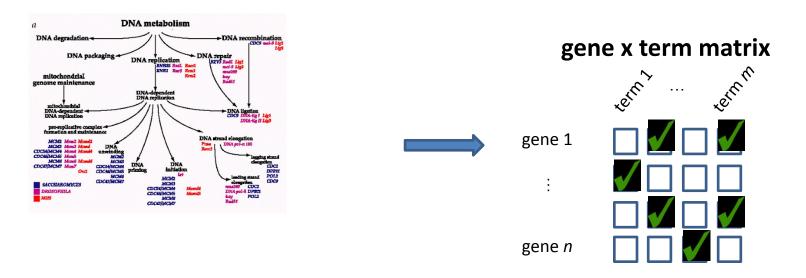
	b = low	B = high	total
a = low	2/5	1/5	3 / 5
A = high	0	2 / 5	2 / 5
total	2 / 5	3 / 5	1

ab ab a b aB aB a B Ab AB AB A B
$$> .4* \log(.4/(.6*.4)) + .2* \log(.2/(.6*.6)) + 0 + .4* \log(.4/(.4*.6))$$
 [1] 0.2911032

Profils phylogénétiques



Annotations, ex: Gene Ontology

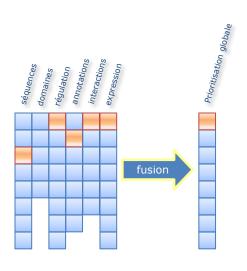


- l'ordre est important : rang
- peut être traitée comme une variable continue sur un intervalle
 - . remplace x_{if} par son rang
 - transforme chaque variable sur [0,1] en remplaçant le *i*-ème objet de la *f*-ème variable

$$r_{if} = \{1, \dots, M_f\}$$

calcule la dissimilarité en utilisant les méthodes de valeurs continues sur un intervalle

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$



Distance de Minkowski:

$$d(i,j) = \sqrt[q]{|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + \dots + |x_{ip} - x_{jp}|^q}$$

avec $i = (x_{i1}, x_{i2}, ..., x_{ip})$ et $j = (x_{i1}, x_{i2}, ..., x_{ip})$ deux objets à p dimensions, et q un entier positif

si q = 1 : distance de Manhattan (ou city block distance)

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

• si q = 2 :distance euclidienne

$$d(i,j) = \sqrt{(x_{i1} - x_{j1}^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

source: wikipedia

- Propriétés

 - d(i,i) = 0 $d(i,j) \ge 0$ (positive) d(i,j) = d(j,i) (symétrique) $d(i,i) \le d(i,k) + d(k,j)$ (inégalité triangulaire)
- Dissimilarité basée sur un coefficient de corrélation
 - Pearson, Spearman (rangs)
 - d(x,y) = 1 corr(x,y)

Distance de Canberra (~ Manhattan pondérée)

$$d(p,q) = \sum_{i=1}^{n} \frac{|p_i - q_i|}{|p_i| + |q_i|}$$

- Similarité = cosinus de l'angle formé par les 2 vecteurs
- Distance de Mahalanobis
 - . distance d'un point à un ensemble
 - . x: vecteur/point
 - S : matrice de variance-covariance

$$d(x) = \sqrt{(x-\mu)^T S^{-1}(x-\mu)}$$

- mesure positive sur une échelle non linéaire, échelle exponentielle qui suit approximativement Ae^{BT} ou Ae^{-BT}
- Méthodes
 - les traiter comme des variables continues sur un intervalles : mauvais choix
 - appliquer une transformation logarithmique puis les traiter comme des variables continues sur un intervalle

$$y_{if} = log x_{if}$$

. les traiter comme des variables ordinales en traitant leur rang

- Mots de même longueur
 - . Distance de Hamming = Nombre de différences
- Séquences
 - . Normalized bit score
 - . distance PAM

- Les objets peuvent être décrits avec tous les types de données
 - binaire symétrique, binaire asymétrique, nominale, ordinale, ...
- Utilisation d'une formule pondérée pour combiner leurs effets

$$d(i,j) = \frac{\sum_{k=1}^{p} w_k d_k(i,j)}{\sum_{k=1}^{p} w_k}$$