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Abstract 

Genetic kinship of ancient individuals can provide insights into their culture and 
social hierarchy, and is relevant for downstream genetic analyses. However, estimat-
ing relatedness from ancient DNA is difficult due to low-coverage, ascertainment bias, 
or contamination from various sources. Here, we present KIN, a method to estimate 
the relatedness of a pair of individuals from the identical-by-descent segments they 
share. KIN accurately classifies up to 3rd-degree relatives using at least 0.05x sequence 
coverage and differentiates siblings from parent-child pairs. It incorporates additional 
models to adjust for contamination and detect inbreeding, which improves classifica-
tion accuracy.

Introduction
Why study relatedness?

Identifying related individuals is a common task in genetic studies. Relatedness is of 
direct interest in, e.g., DNA forensics, where familial search can aid in solving crimi-
nal cases, and to identify unknown deceased persons [1, 2]. Genetic paternity tests have 
an important application in resolving family relation, e.g., in establishing relationship 
between an individual applying for immigration and the claimed relatives [3]. It is also 
an essential step in population genetics and association studies, where samples are typi-
cally assumed to be independent random draws from the population. For animal and 
plant breeders and conservation biologists, reconstructing pedigrees and finding related 
individuals is important to avoid inbreeding and ensure diversity [4–6].

In ancient DNA studies, relatedness can be used to identify bones and teeth belonging 
to the same individual. Given adequate familiarity with the subject, relatedness can pro-
vide an understanding of an ancient society’s social structures, mobility and inheritance 
rules [7–9].
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Approaches to estimate relatedness from high‑coverage data

Commonly, pairs of related individuals are identified by looking for parts of the 
genome that are identical by descent (IBD), i.e., inherited from a recent common 
ancestor. Due to the laws of Mendelian segregation, each parent will share exactly 
one set of chromosomes IBD with their offspring, while a grandparent will on aver-
age share a quarter of their genome with a grandchild due to recombination. Along 
the genomes of a pair of diploid individuals, there are three IBD states possible at 
any given position: the individuals share zero, one, or two chromosomes IBD. The 
genome-wide proportions of these states (usually referred to as k0 , k1 , k2 , so that 
k0 + k1 + k2 = 1 ) can be used to infer the degree and nature of relatedness for a pair 
of individuals. For example, a pair of siblings are expected to have all three possible 
IBD states with proportions of 0.25, 0.5, 0.25, respectively (Fig. 1). These IBD prob-
abilities can directly be used to categorize their relatedness as shown in Table 1. One 
can also use these probabilities to estimate the coefficient of relatedness r, which is 
defined as the proportion of the genome that is IBD. In the absence of inbreeding, this 
would be calculated as r = k1/2+ k2.

Fig. 1  IBD sharing between siblings without and with runs of homozygosity (ROH). A Schematic of 
chromosomes for two parents (Par1, Par2). B Schematics of recombinant chromosomes of two children (Sib1, 
Sib2). C Expected differences between Sib1 and Sib2 (p) along the chromosome. In both cases, p can take 
values of p0 , p1 or p2 , which are the expected proportions of differences in IBD states 0,1 and 2, respectively. 
D–F Same as A–C, except parent 1 is assumed to be homozygous

Table 1  IBD sharing probabilities for different relations in absence of inbreeding

Relatedness k0 k1 k2

Unrelated 1 0 0

3rd degree 0.75 0.25 0

2nd degree 0.5 0.5 0

Siblings 0.25 0.5 0.25

Parent–child 0 1 0

Identical/twins 0 0 1
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However, since it is not possible to directly observe IBD segments, a common 
approach is to first identify segments of the genome that are identical by state (IBS) and 
to use population allele frequencies obtained from an out-of-sample reference panel to 
calculate the probability of IBD given IBS. There are several methods that incorporate 
reference panel allele frequencies, phase information, recombination maps, or genotype 
calls to co-estimate IBD and the relatedness coefficient [10–20].

Approaches that address problems with ancient DNA data

One major issue with applying the above-mentioned methods to ancient DNA data is 
that the sequence coverage is typically low, making it difficult to obtain accurate geno-
type calls. Several methods surmount this problem by using genotype likelihoods [21, 
22]. In this way, it is possible to account for the uncertainty in genotype calls by sum-
ming over all possible genotypes, weighted by their genotype likelihoods. However, 
these approaches typically still require at least 2x coverage, since genotype likelihoods 
may be imprecise at lower coverages [23]. Ancient DNA analyses often face additional 
challenges such as the unavailability of reference panels to estimate population allele fre-
quencies, contamination with present-day DNA [24], and an ascertainment bias caused 
by DNA capture approaches [25, 26].

Several methods have been proposed to estimate relatedness without a reference panel 
from ancient DNA, but they require either > 4 x coverage [27], or a large sample size 
to get an estimate of allele frequencies in the population from which the sampled indi-
viduals originate [28]. A second issue is contamination. If the contamination stems from 
another population, contaminated data will look more dissimilar to other individuals 
from the analyzed population, and hence relatedness will be underestimated. In addi-
tion, some analyzed genomes may have long runs of homozygosity (ROH), for example 
due to a small population size, or recent inbreeding. Long ROH cause related individu-
als to seem genetically more similar to each other but do not affect the genetic distance 
between unrelated individuals.

Moreover, ancient DNA is commonly captured with a SNP array that enriches for 
informative variants. Particularly, methods based on the fraction of sites in different IBS 
states are sensitive to the ascertainment bias caused by this non-random selection of tar-
geted sites [27].

READ [29] addresses several of the issues encountered in the analysis of ancient DNA. 
In particular, the lack of genotype calls is dealt with by randomly sampling alleles from 
each individual. A string of these alleles at each position (called pseudo-haploids) are 
then compared to other individuals to estimate average pairwise genetic distances, 
which in turn are used to infer relatedness. However, READ only infers the degree of 
relatedness, and only up to second degree.

How our method works

Here, we present KIN (Kinship INference), a hidden Markov model (HMM)-based 
approach to estimate genetic kinship and IBD from low-coverage ancient DNA data. KIN 
can detect up to 3rd-degree relatives and differentiates between siblings and parent–child 
relationships. KIN is also able to take into account ROH and contamination and is not sen-
sitive to SNP ascertainment. We validate the performance of KIN using simulations and 
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show that we are able to infer relatedness in real data from two datasets: a group of Nean-
dertals and a group of Bronze age individuals.

Results
Algorithm

To infer relatedness, KIN fits one HMM for each pair of individuals and for each possi-
ble relatedness. The KIN-HMM infers IBD sharing between a pair of low-coverage indi-
viduals, optionally taking ROH tracts and contamination estimates in each individual into 
account. The best-fit model is then assigned as the inferred relatedness. If the locations of 
ROH tracts are unknown, we provide another HMM (ROH-HMM) to coarsely estimate 
the location of ROH for samples with sufficient coverage ( ≥ 0.1x ). Our method is available 
on https://​github.​com/​Divya​ratan​Popli/​Kinsh​ip_​Infer​ence along with a python package 
(KINgaroo) to generate the input files for the models directly from bam files.

Model description

The goal of KIN-HMM is to infer how two individuals are related via the patterns of shared 
IBD states along a pair of genomes. For this purpose, we subdivide the genomes of a pair 
of individuals into L large genomic windows (typically of size 10 Mb) and infer the pattern 
of IBD-sharing for each relatedness case we consider (unrelated, 5th  degree, 4th  degree, 
3rd  degree, grandparent–grandchild, avuncular, half-siblings, parent–child, siblings, and 
identical). We then compare the likelihood between all models, and classify each pair to 
the model with the highest likelihood. We also return the most likely locations of IBD tracts 
(using the standard Viterbi algorithm), and the IBD state posterior probabilities.

The details of the likelihood computation are given in the “Log likelihood of the KIN-
HMM” section. As is the case for any HMM, KIN-HMM requires a set of emission 
(the  “Emission probability” section) and transition probability matrices. We assume the 
transition matrix for each relatedness case is fixed. Our emissions include a vector of 
parameters ( δ ) that describe the variance in the data for each IBD state that we infer from 
the data (the “Emission probability” section).

Input of KIN‑HMM

The inputs of our algorithm are (i) the number of overlapping sites for the wth window Nw 
for which both samples have at least one read available, (ii) the number of pairwise differ-
ences Dw at these sites, and (iii) the probability of ROH in windows, by default obtained 
from ROH-HMM described in the “ROH estimation model” section.

For high-coverage data, Dw can be directly obtained by comparing genotypes, but for 
low-coverage samples, Dw needs to be estimated from the sequencing data. The simplest 
approach is to randomly  sample a read from each position [30–32]. However, such an 
approach may result in loss of data, and hence we estimate Dw by implicitly summing over 
all possible samplings:

(1)Dw =

Nw

s=1

νi(s)(1− νj(s))+ (1− νi(s))νj(s)

https://github.com/DivyaratanPopli/Kinship_Inference
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Here, νi(s) and νj(s) are the proportions of reads carrying the derived allele at SNP index 
s for individuals i and j, respectively. Throughout, we will use bold-face notation to refer 
to the vector (or matrix) collecting all the terms, e.g. D = (D1,D2, . . .DL).

Log likelihood of the KIN‑HMM

The KIN-HMM uses D and N to classify each window into three hidden states Zw ∈ (0, 
1, 2), reflecting zero, one, or two shared chromosomes IBD, respectively. To take ROH 
into account, we define the variable Hw ∈ (0, 1, 2) that designates that zero, one, or both 
individuals are homozygous in window w. Since Hw is unobserved, in practice, we use 
the estimates from ROH-HMM: hwj = P(Hw = j).

There are three additional model parameters, π ,A and δ . The transition matrix A 
gives the probability of moving from state i to state j, given by aij , and is fixed and esti-
mated from simulations for each relatedness case (the “Simulations” section). The initial 
probabilities π give the probabilities of being in each state Z0 (at the beginning of each 
chromosome), which we set to the stationary distribution of the transition matrix for 
simplicity. The over-dispersion parameter δ takes into account that SNPs in each window 
vary in their allele frequencies (see next section). For compactness of notation, we group 
the fixed parameters: θ = (N,A,π).

Thus, the complete data likelihood for the HMM is

Here, Z is not dependent on H and δ.

Emission probability

Using this setup, we can isolate the emissions P(Dw|Zw ,Hw , θ , δ) from Eq. (2) and opti-
mize them for δ . The simplest model is to assume that sites in each window are equally 
distributed and independent. In this case, we could use the binomial likelihood:

where p is the proportion of differences expected for a particular IBD and ROH state. If 
the two individuals are unrelated in a particular window (i.e. Zw = 0 ), then the expected 
proportion of pairwise differences depends solely on the population history, and we 
denote this proportion with p0 . If the two individuals share one or even both cop-
ies of the genome IBD, we would expect the proportion of differences to be reduced to 
p1 =

3
4p0 , and p2 = 1

2p0 , respectively, since either one or two of the four possible com-
parisons will be between identical chromosomes [29]. Thus, p(Zw = i,Hw = 0) = pi.

The proportion of differences between unrelated individuals p0 is an important param-
eter. We follow READ [29] and estimate p0 as the median of differences for all possible 
pairs of individuals, which works well if the majority of individuals in the sample are 
unrelated.

The presence of long tracts of homozygosity resulting from recent inbreeding adds an 
additional complication, as the number of shared chromosomes may be overestimated 

(2)

log P(D,Z|H, θ , δ) = log P(D|Z,H, θ , δ)+ log P(Z|θ)

=
∑

w

log P(Dw|Zw ,Hw ,Nw , δ)+
∑

w

log P(Zw|Zw−1,A)+ log P(Z0|π).

P(Dw|Zw ,Hw ,Nw) ∼ Binom[Dw; p(Zw ,Hw),Nw],
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[33]. For example, when considering two bones from the same individual, we would 
expect the entire genome to have a pairwise difference of p2 , because two out of the 
four compared chromosomes are identical copies. However, in inbred regions, all four 
chromosomes will be identical, and so the expected pairwise differences are zero ( p4 in 
Eq. (3)). Note, however, that p0 does not depend on the presence of ROH, since all com-
parisons are between unrelated chromosomes even if both individuals are homozygous 
at a particular locus.

Taken together, we can summarize p in the following matrix, where rows give the state 
of Zw , and columns of Hw:

As explained above, we would expect p4 to be zero. However, as we do all our calcula-
tions in large windows, the start/end positions of windows may not coincide with that of 
ROH tracts, and we found that we obtain better results by setting p4 =

p2
2  , to take into 

account that many windows will only partially have four comparisons between identical 
chromosomes.

The effect of these considerations is that even though we have nine possible combina-
tions of Zw and Hw for each window, there are actually only four unique p-parameters pi 
with i ∈ (0,1,2,4).

Beta binomial model

We empirically find that the data often has considerably higher variance than would be 
expected from a binomial model (Additional file 1: Fig. S2). We take this into account by 
adding an over-dispersion parameter δ . Just like p(Zw ,Hw) , δ(Zw ,Hw) depends on the 
number of chromosomes compared, and so each of the four pi has a corresponding δi 
parameter.

Taken together, our emission probabilities are

where i is fully determined by the combination of Zw and Hw (see Eq. (3)).
This parameterization of the beta distribution in terms of expected value p and over-

dispersion δ is also called the Balding-Nichols model [34] and is distinct from the more 
common parameterization in terms of α and β . We use this equation even if preprocess-
ing steps (see Eq.  (1) and the  “Contamination correction” section) result in non-inte-
ger Dw and Nw , in which case we approximate the binomial coefficient using Gamma 
functions.

Estimation of δ

We estimate the δ-parameters using an expectation-maximization (EM) algorithm [35].

(3)p(Zw ,Hw) =




p0 p0 p0
p1 p2 p4
p2 p4 p4





(4)
P(Dw|Zw ,Hw ,Nw , δ) ∼BB[Dw; pi, δi,Nw]

=

(
Nw

Dw

)
B(Dw + piδi,Nw − Dw + δi(1− pi))

B(piδi, (1− pi)δi)
,
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Initialization

The value of δi is unknown to start with, and we set it to a random value between 0 and 
1000.

Expectation step

In the t-th iteration, we calculate the posterior probability of each IBD state in each win-
dow γ (t)

wi = P(Zw = i|Dw ,Hw , θi, δ
(t)
i ) using the forward-backward algorithm, where δ(t)i  

is the current estimate for δ for a given IBD state.

Maximization step

The only free parameters we estimate in the maximization step are the over-dispersion 
parameters δi . We do this optimization using a cost function, which is the log-emission 
probability weighted by the posterior probabilities of the hidden states γwj and optionally 
the ROH state-probabilities hwω obtained from the ROH-HMM.

Using Eq. (3), we simplify this by grouping all the terms that have the same number of 
pairwise comparisons between identical chromosomes, which would result in the same 
pi and δi , i.e.

where gw3 is always 0 because there is no case that leads to only three comparisons 
between identical chromosomes.

So, we can rewrite Eq. (5) as:

The cost function (Eq. (7)) has one independent term for each i and so we can separate 
them and estimate each δi independently using the minimize_scalar algorithm imple-
mented in scipy.optimize [36].

We constrain the optimization space of the δi , as unconstrained optimization could 
result in some confounding of cases. We know that different cases of relatedness have 
different numbers of IBD states possible. For example, siblings may have all three IBD 
states present while a parent–child  pair has only Zw = 1 . However, the parent–child 
model could fit data generated under the sibling model by assigning it a very high δ1 , 
which would reduce the performance (for example, see Additional file 1: Fig. S5, S6). We 

(5)

C =E[log P(Dw|Zw ,Hw , θ , δ
(t−1))]

=

L∑

w=1

2∑

j=0

2∑

ω=0

log P(Dw|Nw , δ(j,ω)
(t−1), p(j,ω))hwωγwj

(6)

gw0 =γw0

gw1 =γw1hw0

gw2 =γw2hw0 + γw1hw1

gw3 =0

gw4 =γw2hw1 + γw2hw2 + γw1hw2,

(7)C =

4∑

i=0

L∑

w=1

log P(Dw|Nw , δi, pi)gwi
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avoid this problem by constraining the δ such that the beta distributions for the different 
i overlap by at most one standard deviation.

Model comparison

To infer the most likely relatedness case, we run our model on all relatedness cases 
mentioned in the  “Model description”  section and compare the resulting likelihoods. 
We output the relatedness corresponding to the maximum likelihood model. Since we 
compare models where the parameters are not subset of each other, standard likelihood-
ratio theory for nested models cannot be used to obtain confidence intervals. Instead, 
we use the log-likelihood ratio between the two best models as a statistic to assess the 
confidence in our classifications and use simulations to obtain critical values (Additional 
file 1: Fig. S8).

Grouping of cases

Particularly for low-quality data, we may not be able to distinguish all cases. Thus, we 
group 4th - and 5th-degree relatives together with unrelated. Similarly, we group half-sib-
lings, avuncular and grandparent-grandchild to 2nd-degree relatives in the final results. 
We report the final pairwise classification in the following categories: unrelated, third 
degree, second degree, parent–child, siblings, identical individuals.

Critical values

To investigate the limits of our method, we plotted the true-positive and false-positive 
rates for classification of different relatedness in control simulations (without contami-
nation, ROH and ascertainment bias, see the “Simulations” section) when we use a par-
ticular difference in log-likelihood as a cutoff (Additional file 1: Fig. S8). The figure shows 
that for all relatedness cases except for 3rd-degree, the false positive rate is below 5% 
even when simply selecting the model with the highest likelihood. We observe that for 
3rd-degree relatives, using a cutoff of 1.0 brings down the false positive rate close to 5% 
for all coverages except 0.05x. Thus, we recommended using a cutoff of 1.0 for all cases 
where ROH and contamination are not a concern.

Example case of siblings

In Fig. 2, we show the inferred IBD fragments from different KIN-HMMs when they are 
applied to simulated data from a pair of siblings. The models for identical, parent–child, 
or unrelated relationships allow for just one IBD state, resulting in a flat line and low 
likelihood for this data. The other three cases all allow for different IBD states, but the 
siblings-model predictions match true IBD states the most, as reflected by the highest 
log-likelihood and the close correspondence of the inferred and true IBD states.

ROH estimation model

Our HMM to detect ROH tracts works similarly to the KIN-HMM described above, 
but in this case, we only consider one individual at a time and only consider positions 
covered by at least two reads. For each site, we calculate the proportion of reads that 
carry different alleles and sum them up in windows along the genome. We call the vector 
with the number of differences � , and the vector with the number of sites with at least 
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two reads M . Our model has two possible hidden states: homozygous state ( Yw = 4 ), 
and non-homozygous state ( Yw = 2 ). As above, we collect the hidden states in a vector 
Y = (Y1, . . .Yw , . . . ,YL) . The complete data likelihood for the model in this case is then:

where � is a vector of initial probabilities ( π ), transition matrix ( A ) and M.
Since the source of ROH may not be known, we estimate both transitions and emis-

sions. We calculate the emissions using a beta-binomial likelihood, and fix the mean 
of the distributions corresponding to Yw = 4 and Yw = 2 at expected proportion of 
differences in a homozygous tract ( p4 ) and expected proportion of differences in a 
non-homozygous tract ( p2 ), respectively. The expectation step outputs the posterior 

(8)
logP(�,Y|�, δ) =logP(�|Y,�, δ)+ logP(Y|�)

=[
∑

w

logP(�w|Yw ,Mw , δ)+
∑

w

logP(Yw|Yw−1,A)] + P(Y0|π),

Fig. 2  Comparison of pairwise difference data and inferred IBD fragments. The top panel shows the 
proportion of differences in each window along the genome for a pair of simulated siblings. Dashed 
lines represent p0 , p1 and p2 estimates. The second panel shows the true IBD state for each window. The 
remaining panels show the IBD states predicted by particular relatedness models. The log-likelihood value 
for each model is shown on upper left corner of the panel. Light and shaded backgrounds represent distinct 
chromosomes
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probability Ŵ of being in state Yw = 4 or the state Yw = 2 in each window. The maximi-
zation step for emissions is analogous to that in the KIN model (Eq. 5), and the opti-
mization step here is done with the following cost function:

where P(�w|δi, pi) is a beta-binomial probability with mean p and over-dispersion 
parameter δ similar to Eq. 4, and i can take values 2 and 4 corresponding to the hidden 
states Yw.

To estimate transitions, we initialize the transition matrix with the value 0.2 for the 
off-diagonal entries, and update it using the standard Baum-Welch update step [37]. 
Similar to the KIN-HMM, we avoid fitting issues by forcing all windows whose pro-
portion of differences is larger than p2 to be in the non-homozygous state (Additional 
file 1: Fig. S7).

Contamination correction

Contamination by DNA from present-day people is a common feature of human 
ancient DNA datasets [38]. To address this issue, we developed a heuristic that 
adjusts both Dw and Nw to minimize the influence of contamination on the related-
ness inference.

We assume that contamination rates in both individuals are known and small 
( < 5% ), and set Cij = Ci + Cj , where Ci,Cj are the contamination estimates from the 
two individuals. We also assume the divergence φ between our target population and 
the putative contaminant popoulation is known. With probability Cij , a comparison 
between two random reads from the pair of tested individual will contain a con-
taminant read, and thus contain a difference with probability φ , and with probability 
1− Cij it will be between endogenous ones. The comparisons between two contami-
nant reads are ignored, since we assume Cij to be small.

We estimate the expected number of differences from comparison of endogenous 
reads E[D′

w] , and the total number of sites with overlapping endogenous reads E[N ′

w].
For any particular comparison showing a difference D (not to be confused with 

the number of differences Dw ), we calculate the probability of the event E that it is 
between endogenous reads as

Then, by linearity of expectation, we obtain our estimator for the expected number of 
endogenous comparisons with a difference as

.
Of these terms, P(E) = 1− Cij = 1− P(¬E) , and P(D|¬E) = φ.

(9)C =

L∑

w=1

∑

i

P(�w|δi, pi)Ŵwi,

(10)P(E|D) =
P(D|E)P(E)

P(D|E)P(E)+ P(D|¬E)P(¬E)
.

(11)E[D
′

w] = DwP(E|D) = Dw ×
P(D|E)P(E)

P(D|E)P(E)+ P(D|¬E)P(¬E)



Page 11 of 22Popli et al. Genome Biology           (2023) 24:10 	

For P(D|E), we use an estimator based on the genome-wide average:

Taken together,

Analogous considerations lead to the expected number of endogenous comparisons that 
yield no difference:

Here, Sw = Nw − Dw . Hence, we set E[N ′

w] = E[S
′

w] + E[D
′

w] . We do a similar contami-
nation correction for the input of ROH-HMM.

Evaluation with simulations

We first tested the performance of KIN with simulated pedigrees. We performed coa-
lescent simulations to generate 8 unrelated diploid genomes and artificially mated them 
to form pedigrees of 17 individuals with relationships up to 5th degree (Additional 
file 1: Fig. S3). To evaluate the effect of sequence coverage on the performance of KIN, 
we generated artificial pileups at each polymorphic site for each individual following a 
Poisson distribution with 6 different average depths varying between 4x and 0.03x (see 
the  “Materials and methods” section). To mimic ROH, for some pedigrees, we picked 
a single allele at heterozygous sites in some regions as determined by a Markov chain 
so that on an average about 17% of the genome is ROH. We also created versions with 
contamination, by introducing alleles from distantly related individuals, and ascertain-
ment bias, by selecting polymorphic sites identified in a subset of the individuals (see 
the “Materials and methods” section). We created 60 pedigrees for each combination of 
average coverage and scenarios of presence/absence of ROH, contamination, and ascer-
tainment bias, totalling 2880 pedigrees.

ROH detection

In Fig. 3, we present an example of data and inference of the ROH-HMM for simulations 
with and without ROH, potentially with ascertainment bias and contamination. In all 
cases, we find that the inferred ROH closely matches the simulations, but the confidence 
in the classification tends to increase with the simulated coverage.

A systematic evaluation of the performance of the ROH-HMM is given in Table 2: for 
the purpose of this analysis, we classified all windows that were at least 20% homozygous 
as ROH and the remainder as non-ROH. Likewise, we classified all windows with a pos-
terior probability of ROH of at least 20% as ROH. We used these cases to compute sen-
sitivity (Se) and specificity (Sp). In the control case (simulations with no ascertainment, 

(12)P(D|E) = ρ =

∑
w Dw∑
w Nw
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.
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′
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(1− ρ)(1− Cij)

(1− ρ)(1− Cij)+ Cij(1− φ)
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contamination, or ROH) we see that the specificity remains ≥ 0.99 for all coverages. In 
the cases where we simulate ROH, we find that sensitivity decreases from 97% at 4x cov-
erage to less than 65% at 0.05x coverage, but specificity remains high at above 0.96 for all 
cases, suggesting that the number of erroneously called ROH segments is low.

Fig. 3  Estimation of ROH probabilities along the genome in simulations. The top row in each panel shows 
the proportion of differences in a simulated individual along the genome. In the bottom row, the dotted line 
shows the proportion of each window not in ROH, and the solid lines show the estimated probability of not 
being in the ROH state. A Simulation with no ascertainment, contamination, or ROH. B Simulation with ROH. 
C Simulation with ROH and ascertainment. D Simulation with ROH and contamination

Table 2  Model performance for ROH prediction. Here, we test ROH-HMM in four different cases 
of simulations: control (without ROH, ascertainment bias or contamination), R (with ROH), RA (with 
ROH and ascertainment bias), RC (with ROH and contamination)

Coverage Control (Sp) R (Se) R (Sp) RA (Se) RA (Sp) RC (Se) RC (Sp)

4x > 0.99 0.97 0.98 0.97 0.98 0.97 0.97

0.5x > 0.99 0.96 0.98 0.96 0.98 0.96 0.97

0.2x > 0.99 0.92 0.98 0.91 0.98 0.93 0.97

0.1x > 0.99 0.85 0.98 0.83 0.97 0.82 0.97

0.05x 0.99 0.65 0.96 0.55 0.96 0.57 0.96
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IBD prediction

We investigated the accuracy of IBD state prediction along the genome by counting the 
number of genomic windows where we correctly predict IBD state for different related-
ness and coverages (Fig. 4). The accuracy for coverages of 0.1x or higher is consistent and 
varies between 1.0 and 0.78, depending on relatedness. However, the accuracy decreases 
at lower coverages for most relatedness cases and ranges from 1.0 to 0.48 at 0.03x. The 
exceptions are for identical individuals and parent–child pairs, where the accuracy is 
nearly perfect for all investigated coverages, even at 0.03x coverage. We note that the 
accuracy of IBD prediction is lowest for siblings, followed by 2nd-degree and 3rd-degree 
relatives. This is because IBD in siblings is more variable and therefore harder to pre-
dict. A pair of 3rd-degree relatives, for example, are expected to only share 12.5% of their 
genome IBD, with the rest being unrelated. Therefore, even a naive classifier that classi-
fied everything as unrelated would have an accuracy of 87.5% . In contrast, siblings are 
expected to share one chromosome IBD for half their genomes, and both chromosomes 
for another 25% . This higher variability makes predictions harder.

We find that adding contamination, ascertainment bias in our simulations has little 
effect on IBD prediction. Adding ROH to the simulations reduces the IBD prediction in 
two cases: the average accuracy for second-degree relatives decreases from 0.89 to 0.85 
and for siblings from 0.81 to 0.70 (Additional file 1: Fig. S9). We see this adverse effect 
of ROH in case of siblings, although we do not introduce long ROH directly, perhaps 
because ROH in the parents have an effect (see the “Materials and methods” section). 
They may cause a difficulty in differentiating between different combinations of IBD 
( Zw ) and ROH states ( Hw ). However, this does not affect the power to identify siblings in 
presence of ROH even at 0.05x (see Fig. 5).

Relatedness classification

We evaluated the classification accuracy of KIN (cutoff: 1 log-likelihood unit) and 
compared it to that of READ (cutoff: 1 standard deviation)) (Fig. 5). We first describe 
the results for relatedness cases detectable by READ, viz. identical, 1st degree, 2nd 
degree, and unrelated. In this case, we show that both methods have similar perfor-
mance for low-coverage shotgun data (“control”-case) and for ascertained data. The 
true positive rate is above 0.97 for both KIN and READ, while the false negative rate 

Fig. 4  Evaluation of IBD estimation at different coverages. y-axis shows per-window performance accuracy 
calculated over 60 simulations with each relatedness case and six different coverages shown on x-axis. The 
error bars are drawn at 1 standard deviation from the mean. Here, accuracy corresponding to relatedness 
cases for parent–child and identical individuals is always 1 and overlaps with each other. Accuracy is defined 
as the proportion of correctly predicted IBD states, when compared to the central position of the window
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is below 0.02. One exception is 2nd-degree relatives, where KIN has higher power 
than READ, and as coverage decreases from 4x to 0.05x, KIN’s true positive rate 
decreases from 0.95 to 0.89, compared to range of 0.91 to 0.75 for READ. The false 
positive rate in this case remains below 0.03 for both methods.

To investigate the impact of contamination, we performed simulations where we 
added up to 3% contamination to some individuals. We find that READ is strongly 
impacted by contamination as the true positive rate is in the range 0.89 to 0.78 and 
0.54 to 0.46 for 1st- and 2nd-degree relatives, respectively, and the false positive 
rate reaches up to 0.04 and 0.17 for unrelated individuals and 2nd-degree relatives, 
respectively. In comparison, we also ran KIN, giving it the simulated contamination 
amounts for each individual. We find that the correction implemented in KIN is suf-
ficient to remove this bias, and the true and false positive rates remain as in the 
control (Fig. 5). We also performed an analysis where we misspecified the contami-
nation, and find that the effect of modest misspecification is small (Additional file 1: 
Fig. S13).

For simulations with ROH, we find that KIN also outperforms READ for 1st- and 
2nd-degree relatives, although both the true and false positive rates increased for 
both methods compared to the control for 2nd-degree relatives. The increase in 
false positives is likely due to ROH making related individuals more similar. Finally, 
we also find that KIN has good power to detect relatedness cases that are not detect-
able by READ, i.e. parent–child, siblings and, to a lower level, 3rd-degree relatives 
(Fig. 5).

Fig. 5  Comparison of KIN with READ using simulations with different coverages, and different cases of 
ascertainment, contamination and ROH. “Unrelated” label here refers to KIN performance results when all 
unrelated, fifth degree, fourth degree, and third degree pairs are labeled as unrelated (for fair comparison 
with READ). “Unrelated w/o 3rd degree” refers to the performance results when 3rd degree is classified 
separately from the unrelated individuals
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Application to real data

Chagyrskaya and Okladnikov Neandertals

To test KIN on real ancient data, we applied it to a Neandertal dataset from Chagyr-
skaya and Okladnikov Caves in Siberia, Russia [39–41]. This dataset contains genetic 
data from a total of 16 skeletal remains that likely belong to contemporary Neander-
tals who occupied the Chagyrskaya and Okladnikov caves between 59 and 51 kya 
and at least 44 kya respectively [41]. DNA extracted from each of these remains were 
captured with an array targeting variable sites identified in high-coverage Neandertal 
and Denisovan genomes and common variations in Africans [41]. This genetic data 
has low-to-intermediate depth of coverage ranging from 0.01x to 12.34x, with 8 sam-
ples at < 1x coverage. Some of these specimens showed signs of long ROH and DNA 
contamination from modern humans as well as hyenas [41]. We focused our analy-
sis on the variable sites in two high-coverage Neandertal genomes: Altai Neandertal 
(Denisova 5) [32] and Vindija 33.19 [42] as done by the authors for the relatedness 
analysis [41]. Our results for pairwise relatedness for these individuals are shown in 
Fig. 6. We found three specimens from the same individual (Chagyrskaya13-Chagyr-
skaya19-Chagyrskaya1141), a parent–child pair (Chagyrskaya07 and Chagyrskaya17), 
and a pair of 2nd-degree relatives (Chagyrskaya01/Chagyrskaya60). Further, we iden-
tify Chagyrskaya17 and Chagyrskaya60 as 3rd-degree relatives (Additional file  2: 
Table S1).

Fig. 6  Application of KIN to Neandertal remains from Chagyrskaya and Okladnikov Caves. The color of a 
square represents the relatedness, while the number within denotes log-likelihood ratio ( �LL ) between the 
two maximum likelihood models



Page 16 of 22Popli et al. Genome Biology           (2023) 24:10 

Our estimates are consistent with those obtained using READ, except that READ 
is unable to detect 3rd-degree relationships, and does not distinguish between sib-
ling and parent–child relationships (Additional file 1: Fig. S4). We also find that both 
KIN and READ classify Chagyrskaya06 and Chagyrskaya14 as parent–child with low 
confidence but from the morphology they likely stem from the same individual. We 
believe that the low confidence mis-classification may be due to uncorrected non-
human contamination present in these libraries ( 1% and 2.9% respectively [41]), bias-
ing the estimated differences between the individuals to higher values.

We compared the IBD estimates obtained using KIN to those from lcMLkin for all 
pairs for whom READ results (with s.d. > 1) and KIN results ( �LL > 1) match (Addi-
tional file  1: Fig. S10). We find that lcMLkin creates four different clusters based 
on the coefficient of relatedness (r) and the proportion of the genome in the unre-
lated state ( k0) for different relatedness cases (identical, parent–child, 2nd degree 
and unrelated). However, the location of these clusters strongly deviates from the 
expected values, likely due to the low coverage and ROH. Remains from the same 
individual, for example, are expected to be at k0 = 0 and r = 1  but are at k0 ≈ 0.3 , 
r ≈ 0.6 for lcMLkin (Additional file 1: Fig. S10).

Ancient modern humans

We further applied KIN to a genome-wide dataset of 118 ancient individuals from the 
Lech Valley [8]. We compared our relatedness estimates to those obtained by the authors 
using READ and lcMLkin. We found that KIN was able to confidently classify 85% of the 
6903 possible comparisons ( �LL > 1 ), READ 94% ( s.d. > 1 ) and lcMLkin 53% of pairs 
([8]).

Only for 28 pairs, KIN has confident classifications that differ from those obtained 
using READ (Additional file  2: Table  S2, Additional file  1: Fig. S11). Twenty of these 
comparisons, KIN predicts to be third-degree relationships, and READ concordantly 
classifies them as unrelated (as it only infers first- and second-degree relationships). 
lcMLkin predicts 3rd - 5th degree  in 14 of these cases, unrelated in 1 case (see Addi-
tional file 1: Fig. S11), second degree in 1 case (see Additional file 1: Fig. S11), and does 
not have enough data for classification in 4 cases. For 10 additional pairs, lcMLkin pre-
dicts 3rd–5th degree, but KIN infers them to be unrelated. There are a total of 83 pairs 
where READ obtains a confident call ( s.d. > 1 ), but KIN does not ( �LL < 1 ). In 80 of 
these cases, READ classifies them as unrelated, KIN classifies 3rd degree, while lcM-
Lkin predicts 3rd–5th degree. The remaining cases READ classifies unrelated, while KIN 
and lcMLkin call a 2nd-degree relationship. Thus, the vast majority of differences can be 
explained by READ not considering 3rd-degree relationships.

For less than third-degree relations, only eight cases are classified differently between 
KIN and READ. lcMLkin matches KIN’s prediction in two cases, and does not have 
enough data in 5 cases. In the last case, all three methods differ (Additional file  2: 
Table S3, Additional file 1: Fig. S11), and the true relatedness is unresolved in this case. 
Finally, there are three disagreements between KIN and lcMLkin in classification of par-
ent–child versus siblings (READ predicts first degree for all three pairs). We plotted the 
pairwise differences for these three pairs in Additional file 1: Fig. S12, and found that the 
proportion of differences along the genome aligns with the prediction of KIN.
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Discussion
Here, we present a new method called KIN to estimate genetic kinship and the loca-
tion of IBD tracts from low-coverage data, in presence of long ROH, contamination, as 
well as ascertainment bias. Our method utilizes a set of HMMs to estimate IBD tracts 
and uses them to classify each pair of individuals into a possible relatedness case, along 
with a measure of classification confidence (Additional file 1: Fig. S1). We evaluated the 
method performance of KIN, and compared it to that of READ using simulated pedi-
grees. Finally, we show applications of KIN on two ancient datasets.

For detecting ROH, there is only one method available that works with low coverage 
ancient DNA [43]. This software can infer ROH at coverages ≥ 0.3x but requires a large 
reference panel. Instead, our method detects long ROH based on just the expected het-
erozygosity p0 , which can be estimated from a small number of unrelated individuals. 
On simulations, we find that our method reliably infers ROH regions with lengths on the 
order of 10 cM from samples sequenced to coverage ≥ 0.1x . In our simulations, we find 
that adding long ROH ( ≈ 17% ) to simulations slightly improves the power of both KIN 
and READ, particularly at lower coverages. This is likely because ROH actually reduces 
the variance in differences depending on the relatedness and makes it easier to correctly 
classify relatedness. For READ, the presence of ROH causes a bias towards inferring 
closer relatedness cases, but the model we use in KIN reduces this bias (see Fig. 5).

We show that KIN reliably detects IBD tracts for ≥ 0.1x coverage even in the presence 
of contamination and ascertainment bias, and the accuracy for IBD detection reduces 
with lower coverages. Adding ROH to the simulations adversely affects IBD prediction 
in siblings (Additional file 1: Fig. S9), but this does not affect the power to correctly clas-
sify siblings (Fig. 5).

Contamination can affect the accuracy of relatedness inference for two reasons. For 
one, if a substantial fraction of samples is contaminated, then the estimation of p0 
becomes inaccurate, because the majority of pairwise differences will include at least one 
contaminated sample. The second issue is that contaminated samples will look less simi-
lar to other individuals and thus cause a bias towards inferring them to be less related 
to other individuals. The amount of contamination does not need to be large for this to 
be important; in our simulations, we find that even at contamination levels ≤ 3% , the 
performance of READ is substantially reduced. When contamination rates are correctly 
inferred, the correction we implemented leads to improved performance compared to 
naive methods such as READ, although they too could be ameliorated in a similar way 
[41]. However, in many cases, contamination estimates may be uncertain or inaccurate, 
and we show in Additional file 1: Fig. S13 that KIN’s performance is robust to small devi-
ations (small compared to average pairwise heterozygosity) in contamination estimates.

The Lech Valley data has low contamination and no ROH. For pairwise comparisons 
with large numbers of overlapping sites ( > 10000 ), KIN, READ, and lcMLkin all mostly 
agree. However, KIN is able to differentiate between parent–child and siblings and iden-
tify second-degree relationship from just a few thousand polymorphic sites ( ≈ 4000) 
overlapping between samples. KIN can also infer third-degree relation with ≈ 30,000 
overlapping polymorphic sites. We show that when applied to Neandertal specimens 
from Chagyrskaya and Okladnikov Caves, KIN identifies a pair of 1st-degree relatives as 
parent–child, which is in agreement with the finding that the mtDNA haplotypes differ 
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between the samples (one sample is male and the other female) [41]. In addition, KIN 
identifies a pair of 3rd-degree relatives. In this case of a population with large amounts 
of ROH, we find that the inference by lcMLkin are heavily biased, but KIN’s model takes 
ROH into account and both the coefficient of relatedness and k0 are very close to what 
would be expected from the inference by both READ and KIN.

One limitation of our approach is that it assumes a single population. In case of a 
highly structured population, KIN may show inaccurate inference of p0 causing inac-
curate relatedness inference. Also, our method makes the assumption that the median 
pairwise genetic difference in the population reflects the population diversity p0 , which 
fails if almost all individuals in the dataset are related. We may get around this problem 
by using an estimate of p0 , calculated from a known pair of unrelated individuals from 
same population, or another population with similar diversity. We provide the user with 
an option to give an estimate of p0 . The current implementation of KIN is restricted to 
the six relatedness cases we expect to be the most common, but it might be feasible to 
extend it to other cases, such as double first cousins, using a corresponding IBD state 
transition matrix.

While we have focused on the application of KIN on ancient human samples, the 
model is not tied to this system. Assuming we know the recombination rate and hence 
can estimate the transition matrix (see the “Materials and methods” section), KIN can 
be widely applied to any diploid species. In addition, the output of KIN is a table which 
shows for each pair, the most likely model, and the second best guess, along with a con-
fidence level represented by the log-likelihood ratio. This makes KIN easy to automatize 
for large datasets. To make application of KIN user-friendly, we provide a python pack-
age (KINgaroo) to create input files for KIN from processed bam files, while optionally 
estimating ROH and correcting for contamination estimates.

Conclusions
KIN is a useful tool to estimate relatedness and the location of IBD tracts from low-cov-
erage ancient DNA samples in presence of long ROH, contamination, and ascertainment 
bias. This method is applicable to any diploid species and is easy to automatize for large 
datasets.

Materials and methods
Simulations

We use simulations both for estimating the transition matrices and for testing and vali-
dating our algorithm. All simulations are performed in a scenario mimicking the analysis 
of a Neandertal population contaminated by modern humans [40]. We simulate unre-
lated individuals using msprime [44], followed by an additional step where we simulate 
related individuals using a predetermined pedigree (Additional file 1: Fig. S3).

Simulating pedigrees

For our simulations of background diversity, we form a population (Pop1) with constant 
effective size of 10,000 and sample eight diploid individuals (each made up of two hap-
loid individuals) from 2500 generations ago (Additional file 1: Fig. S3). For each individ-
ual, we simulate 22 chromosomes with length L ≈ 96 Mb (same as chromosome 13) and 
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a recombination rate of r = 10−8 per base pair per generation. We introduce mutations 
using an infinite sites model with rate µ = 10−8 per base pair per generation.

For the pedigree simulations, we first simulate a recombined set of chromosomes for 
either parent, and combine them to create the progeny. There are two different ways in 
which we generate recombination points. For the estimation of transition probabilities, 
we simulate recombination by first drawing the number of breakpoints as a Poisson ran-
dom variable with parameter rL, and use a uniform distribution on [1, L] to sample the 
positions of recombination points. For the testing of our method, we use Ped-sim [45] to 
simulate recombination points. This allows us to take into account sex-specific recom-
bination rates and crossover interference, and thus is expected to give a more realistic 
recombination landscape. The pedigree simulations result in nine addition individuals, 
resulting in a total sample of 17 individuals.

Transition matrices

KIN requires a transition matrix for each relatedness case, which we estimate by count-
ing the transition between IBD states for all pairs of individuals with that relatedness in 
a training set of 1000 simulations from our pedigree (Additional file 1: Fig. S3). For two 
cases, siblings and grandparent-grandchild, it is possible to write down the theoretical 
expectation of the transition matrix:

For grandparent-grandchild, rate matrix is

Similarly, for a pair of siblings, we calculate

The state space includes all IBD states in this case. For these two cases, we get the transi-
tion matrix in each case as eQb , where b is the window size.

Simulations for method evaluation

Apart from the related and unrelated individuals in Pop1, we simulated more haploid 
individuals in three other populations to create scenarios with ascertainment bias and 
contamination (Additional file 1: Fig. S3). We simulated two individuals to form an indi-
vidual each from two other populations (Pop2, Pop3) with split time of 3500 and 4500 
generations with Pop1 and sampling time of 2000 generations and 4000 generations ago 
respectively. We identified the sites that were polymorphic among these two individuals 
and used these sites to ascertain the genomes of individuals from Pop1. This scenario 
roughly models the ascertainment of the Chagyrskaya and Okladnikov Caves data. We 
tested the performance of our method in presence of long ROH ( ∼ 17% ), by simulating 
regions of homozygosity in unrelated individuals with a Markov chain using the transi-
tion matrix:

Q =

[
−r r
r − r

]

Q =




−4r 4r 0
2r − 4r 2r
0 4r − 4r




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It is worth noting that we introduce long ROH in unrelated individuals, before arti-
ficially mating them to form pedigrees, which means that we do not directly introduce 
ROH in progeny, but it still affects relatedness inference among progeny as shown in 
Fig.  1. From the steps described above, we got genotypes of individuals in Pop1 in 
presence/absence of ROH and ascertainment. We further simulated five diploid indi-
viduals from Pop4 with split time of 20,000 generations with Pop1, sampled from the 
present time, as a source of contamination. For cases including contamination, we 
contaminated eight individuals with varying amounts between 0.5% to 3% contamina-
tion, while the remaining nine individuals did not have any contamination. We gen-
erated reads (derived/ancestral) for different genomic coverages ranging from 4x to 
0.03x, assuming a Poisson distribution.

For testing, we replicate our simulation 60 times and create data from the same 
base simulations at varying levels of coverages and different scenarios: we have a 
control scenario (without ascertainment bias, ROH or contamination) and indi-
vidual scenarios where we add ROH, SNP ascertainment and contamination. For 
the evaluation of the ROH-HMM, we also combine ROH with ascertainment or 
contamination.
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